Using the R dataset mtcars, I want to make a new binary variable for each level of the "cyl" variable.
For example, the values of cyl are 6, 4, and 8.
I want a new dataset with variables "cyl_4", "cyl_6", and "cyl_8" equal to 1 when each of these numbers occur.
Am looking for solutions that create a new variable for each level of the original variable.
Have:
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Want:
mpg cyl disp hp drat wt qsec vs am gear carb cyl_4 cyl_6 cyl_8
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 0 1 0
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 0 1 0
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 1 0 0
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1 0 1 0
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2 0 0 1
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1 0 1 0
CodePudding user response:
Here's one tidyverse solution: pivot on the cyl
column, then replace the values in the 3 resulting columns with 0 where they are NA, otherwise with 1.
library(dplyr)
library(tidyr)
library(tibble)
mtcars %>%
rownames_to_column(var = "model") %>%
pivot_wider(names_from = "cyl",
values_from = "cyl",
names_prefix = "cyl_",
names_sort = TRUE) %>%
mutate(across(starts_with("cyl"), ~ ifelse(is.na(.), 0, 1)))
Result (first 5 rows):
# A tibble: 32 × 14
model mpg disp hp drat wt qsec vs am gear carb cyl_4 cyl_6 cyl_8
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Mazda RX4 21 160 110 3.9 2.62 16.5 0 1 4 4 0 1 0
2 Mazda RX4 Wag 21 160 110 3.9 2.88 17.0 0 1 4 4 0 1 0
3 Datsun 710 22.8 108 93 3.85 2.32 18.6 1 1 4 1 1 0 0
4 Hornet 4 Drive 21.4 258 110 3.08 3.22 19.4 1 0 3 1 0 1 0
5 Hornet Sportabout 18.7 360 175 3.15 3.44 17.0 0 0 3 2 0 0 1
CodePudding user response:
You could use model.matrix()
to create the design matrix for a catogorical variable.
cbind(mtcars, model.matrix(~ cyl - 1, transform(mtcars, cyl = as.factor(cyl))))
# mpg cyl disp hp drat wt qsec vs am gear carb cyl4 cyl6 cyl8
# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 0 1 0
# Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 0 1 0
# Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 1 0 0
# Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 0 1 0
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 0 0 1
# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 0 1 0