I have a sample dataframe:
| ID | SampleColumn1| SampleColumn2 | SampleColumn3 |
|:-- |:------------:| ------------ :| ------------ |
| 1 |sample Apple | sample Cherry |sample Lime |
| 2 |sample Cherry | sample lemon | sample Grape |
I would like to create a new DataFrame based off of this initial dataframe. Should one of several values in a list [Apple, Lime, Cherry] be in any of the columns for a row, it would appear as a 1 in the new dataframe for its column. In this case, the output should be:
| ID | Apple | Lime | Cherry |
| 1 | 1 | 1 | 1 |
| 2 | 0 | 0 | 1 |
Currently I have tried in going about in using the find function for a string, transforming a series into a string for each row then using an if condition if the value has returned and equals the column name of the new dataframe. I am getting a logic error in this regard.
CodePudding user response:
You can create a function to replace strings that contain your desired substrings, then use pd.get_dummies()
fruits = ['Apple', 'Lime', 'Cherry']
def replace_fruit(string):
for fruit in fruits:
if fruit in string:
return fruit
return None
pd.get_dummies(df.set_index('ID').applymap(replace_fruit), prefix='', prefix_sep='').groupby(level=0, axis=1).sum().reset_index()
CodePudding user response:
try this:
keywords = ['Apple', 'Lime', 'Cherry']
tmp = (df.melt(ignore_index=False)
.value.str.extract(
f'({"|".join(keywords)})',
expand=False)
.dropna())
res = (pd.crosstab(index=tmp.index, columns=tmp)
.rename_axis(index=None, columns=None))
print(res)
>>>
Apple Cherry Lime
1 1 1 1
2 0 1 0