Home > database >  Create a new DataFrame using pandas date_range
Create a new DataFrame using pandas date_range

Time:01-11

I have the following DataFrame:

   date_start          date_end
0  2023-01-01 16:00:00 2023-01-01 17:00:00
1  2023-01-02 16:00:00 2023-01-02 17:00:00
2  2023-01-03 16:00:00 2023-01-03 17:00:00
3  2023-01-04 17:00:00 2023-01-04 19:00:00
4  NaN                 NaN

and I want to create a new DataFrame which will contain values starting from the date_start and ending at the date_end of each row. So for the first row by using the code below:

new_df = pd.Series(pd.date_range(start=df['date_start'][0], end=df['date_end'][0], freq= '15min'))

I get the following:

0   2023-01-01 16:00:00
1   2023-01-01 16:15:00
2   2023-01-01 16:30:00
3   2023-01-01 16:45:00
4   2023-01-01 17:00:00

How can I get the same result for all the rows of the df combined in a new df?

CodePudding user response:

You can use a list comprehension and concat:

out = pd.concat([pd.DataFrame({'date': pd.date_range(start=start, end=end,
                                                     freq='15min')})
                  for start, end in zip(df['date_start'], df['date_end'])],
                ignore_index=True))

Output:

                  date
0  2023-01-01 16:00:00
1  2023-01-01 16:15:00
2  2023-01-01 16:30:00
3  2023-01-01 16:45:00
4  2023-01-01 17:00:00
5  2023-01-02 16:00:00
6  2023-01-02 16:15:00
7  2023-01-02 16:30:00
8  2023-01-02 16:45:00
9  2023-01-02 17:00:00
10 2023-01-03 16:00:00
11 2023-01-03 16:15:00
12 2023-01-03 16:30:00
13 2023-01-03 16:45:00
14 2023-01-03 17:00:00
15 2023-01-04 17:00:00
16 2023-01-04 17:15:00
17 2023-01-04 17:30:00
18 2023-01-04 17:45:00
19 2023-01-04 18:00:00
20 2023-01-04 18:15:00
21 2023-01-04 18:30:00
22 2023-01-04 18:45:00
23 2023-01-04 19:00:00

handling NAs:

out = pd.concat([pd.DataFrame({'date': pd.date_range(start=start, end=end,
                                                     freq='15min')})
                  for start, end in zip(df['date_start'], df['date_end'])
                  if pd.notna(start) and pd.notna(end)
                ],
                ignore_index=True)

CodePudding user response:

Adding to the previous answer that date_range has a to_series() method and that you could proceed like this as well:

pd.concat(
  [
    pd.date_range(start=row['date_start'], end=row['date_end'], freq= '15min').to_series()
    for _, row in df.iterrows()
  ], ignore_index=True
)
  • Related