Home > front end >  From half-hour to hourly data
From half-hour to hourly data

Time:10-24

My data set contains observations taken every 30 minutes. Basically, I would like to have such as 01:00:00 as the new time; 02/01/2019 as an exampe of date and the sum of the measurement values between 00:00:00-00:30:00 and 00:30:00-01:00:00 As an output

time          variable            value
01:00:00      02/01/2019          234.3 (example)

How can I aggregate my data to 1 hour?

Sample data: Selected only the first 300

structure(list(time = structure(c(1800, 3600, 5400, 7200, 9000, 
    10800, 12600, 14400, 16200, 18000, 19800, 21600, 23400, 25200, 
    27000, 28800, 30600, 32400, 34200, 36000, 37800, 39600, 41400, 
    43200, 45000, 46800, 48600, 50400, 52200, 54000, 55800, 57600, 
    59400, 61200, 63000, 64800, 66600, 68400, 70200, 72000, 73800, 
    75600, 77400, 79200, 81000, 82800, 84600, 86400, 1800, 3600, 
    5400, 7200, 9000, 10800, 12600, 14400, 16200, 18000, 19800, 21600, 
    23400, 25200, 27000, 28800, 30600, 32400, 34200, 36000, 37800, 
    39600, 41400, 43200, 45000, 46800, 48600, 50400, 52200, 54000, 
    55800, 57600, 59400, 61200, 63000, 64800, 66600, 68400, 70200, 
    72000, 73800, 75600, 77400, 79200, 81000, 82800, 84600, 86400, 
    1800, 3600, 5400, 7200, 9000, 10800, 12600, 14400, 16200, 18000, 
    19800, 21600, 23400, 25200, 27000, 28800, 30600, 32400, 34200, 
    36000, 37800, 39600, 41400, 43200, 45000, 46800, 48600, 50400, 
    52200, 54000, 55800, 57600, 59400, 61200, 63000, 64800, 66600, 
    68400, 70200, 72000, 73800, 75600, 77400, 79200, 81000, 82800, 
    84600, 86400, 1800, 3600, 5400, 7200, 9000, 10800, 12600, 14400, 
    16200, 18000, 19800, 21600, 23400, 25200, 27000, 28800, 30600, 
    32400, 34200, 36000, 37800, 39600, 41400, 43200, 45000, 46800, 
    48600, 50400, 52200, 54000, 55800, 57600, 59400, 61200, 63000, 
    64800, 66600, 68400, 70200, 72000, 73800, 75600, 77400, 79200, 
    81000, 82800, 84600, 86400, 1800, 3600, 5400, 7200, 9000, 10800, 
    12600, 14400, 16200, 18000, 19800, 21600, 23400, 25200, 27000, 
    28800, 30600, 32400, 34200, 36000, 37800, 39600, 41400, 43200, 
    45000, 46800, 48600, 50400, 52200, 54000, 55800, 57600, 59400, 
    61200, 63000, 64800, 66600, 68400, 70200, 72000, 73800, 75600, 
    77400, 79200, 81000, 82800, 84600, 86400, 1800, 3600, 5400, 7200, 
    9000, 10800, 12600, 14400, 16200, 18000, 19800, 21600, 23400, 
    25200, 27000, 28800, 30600, 32400, 34200, 36000, 37800, 39600, 
    41400, 43200, 45000, 46800, 48600, 50400, 52200, 54000, 55800, 
    57600, 59400, 61200, 63000, 64800, 66600, 68400, 70200, 72000, 
    73800, 75600, 77400, 79200, 81000, 82800, 84600, 86400, 1800, 
    3600, 5400, 7200, 9000, 10800, 12600, 14400, 16200, 18000, 19800, 
    21600), class = c("hms", "difftime"), units = "secs"), variable = c("02/01/2019", 
    "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", 
    "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", 
    "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", 
    "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", 
    "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", 
    "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", 
    "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", 
    "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", 
    "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", "02/01/2019", 
    "02/01/2019", "02/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", "03/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", "04/01/2019", 
    "04/01/2019", "04/01/2019", "04/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", "05/01/2019", 
    "05/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", 
    "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", 
    "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", 
    "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", 
    "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", 
    "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", 
    "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", 
    "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", 
    "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", 
    "06/01/2019", "06/01/2019", "06/01/2019", "06/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", "07/01/2019", 
    "07/01/2019", "07/01/2019", "08/01/2019", "08/01/2019", "08/01/2019", 
    "08/01/2019", "08/01/2019", "08/01/2019", "08/01/2019", "08/01/2019", 
    "08/01/2019", "08/01/2019", "08/01/2019", "08/01/2019"), value = c(0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
    0, 0, 0, 0, 0)), row.names = c(NA, -300L), class = c("tbl_df", 
    "tbl", "data.frame"))

CodePudding user response:

I've got an answer, that uses {lubridate}:

library(lubridate)

a_df %>%
  mutate(datetime = lubridate::dmy_hms(str_c(variable, time))) %>% 
  mutate(duration_elapsed = lubridate::interval(datetime[1], datetime),
         duration_elapsed = as.duration(duration_elapsed)) %>% 
  mutate(hourly_group = duration_elapsed %/% dhours()) %>% 
  
  glimpse() %>% 
  group_by(hourly_group) %>% 
  summarise(
    value = sum(value),
    time = last(time),
    variable = last(variable),
    datetime = last(datetime)
  ) %>% 
  # select(-hourly_group, -time, -variable) %>%
  select(-hourly_group) %>%
  
  print(width = Inf, n = 50)

Note that a_df is the data-frame you've provided.

This should work, and it should be robust if you have missing numbers, etc.

  • Related