Suppose I have dataframe like this:
id,month,price
1,2021-04-31,9
1,2021-01-31,5
1,2021-02-31,6
1,2021-03-31,8
So for each same ID
I want to fetch sum of price
for current row month-1
and -2
For example for row 1,march,8
, I will get output as 5 6=11
in a new column since for current march row past two months are jan
and feb
There will be other ids
as well in the main data
CodePudding user response:
Convert month
names into month numbers then use it for ordering in a Window partitioned by id
for running sum:
from pyspark.sql import functions as F, Window
df = spark.createDataFrame([
(1, "apr", 9), (1, "jan", 5),
(1, "feb", 6), (1, "march", 8)
], ["id", "month", "price"])
# handle both full and short textual representation of month names
month_number = F.when(F.length("month") == 3, F.month(F.to_date(F.col("month"), "MMM"))) \
.otherwise(F.month(F.to_date(F.col("month"), "MMMM")))
w = Window.partitionBy("id").orderBy(month_number).rangeBetween(-2, -1)
df.withColumn("price_sum", F.sum("price").over(w)).show()
# --- ----- ----- ---------
#| id|month|price|price_sum|
# --- ----- ----- ---------
#| 1| jan| 5| null|
#| 1| feb| 6| 5|
#| 1|march| 8| 11|
#| 1| apr| 9| 14|
# --- ----- ----- ---------
For your updated question, you can truncate the dates into month unit then use window with range between interval -2 months
and interval -1 months
:
df = spark.createDataFrame([
(1, "2021-04-30", 9), (1, "2021-01-31", 5),
(1, "2021-02-28", 6), (1, "2021-03-31", 8)
], ["id", "month", "price"])
df.withColumn(
"date",
F.date_trunc("month", F.col("month"))
).withColumn(
"price_sum",
F.expr("""sum(price) over(partition by id order by date
range between interval 2 months preceding
and interval 1 months preceding)
""")
).drop("date").show()
CodePudding user response:
Use window function to SUM on price, PARTITION BY month (numeric), and use ROWS to get two preceding rows.
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = spark.read.option("header",True).csv("path/to/file") # Assuming file is csv
df.createOrReplaceTempView('df')
df1 = spark.sql("""
SELECT id,month,price,
CASE
WHEN month = 'jan' THEN 1
WHEN month = 'feb' THEN 2
.
.
.
else 12
END AS month_num
FROM df
""")
df1.createOrReplaceTempView('df1')
spark.sql("""
SELECT id, month, price,
SUM(price) OVER (PARTITION BY id ORDER BY month_num ROWS 2 PRECEDING) AS price_sum
FROM df1
""").show()
Add to the second query
WHERE month_num NOT IN (1,2)
if you want price_sum 0 for jan & feb.