I have the following data:
df <- data.frame(dt1 = c("2019-05-02", "2019-01-02", "2019-06-02"),
dt2 = c("2019-08-30", "2019-04-24", "2019-12-06") )
> df
dt1 dt2
1 2019-05-02 2019-08-30
2 2019-01-02 2019-04-24
3 2019-06-02 2019-12-06
Here is what I want to do:
i) I want create factors by binning, for example, for the first date, the dates binned as 2019-07-31, 2019-06-30, 2019-05-31, so essentially binning by dt2.
ii) I want to count the total number of dates in each bin.
The expected output is:
dt1 dt2 val_count
1 2019-05-02 2019-08-30 3
2 2019-01-02 2019-04-24 3
3 2019-06-02 2019-12-06 6
I found this post relevant.
Note: I do not want take difference between months of two dates.
Thank you for suggestions.
CodePudding user response:
It's pretty messy but if you want to count how many last date of the months are in between dt1
and dt2
, you may try
library(lubridate)
library(dplyr)
fd <- paste0(lubridate::year(min(df$dt1, df$dt2)), "-02-01") %>% as.Date()
ld <- paste0(lubridate::year(max(df$dt1, df$dt2)) 1, "-01-01") %>% as.Date()
x <- seq.Date(fd, ld, by = "month") - 1
df %>%
rowwise() %>%
mutate(val_count = length(x[dt1 < x & x < dt2]))
dt1 dt2 val_count
<chr> <chr> <int>
1 2019-05-02 2019-08-30 3
2 2019-01-02 2019-04-24 3
3 2019-06-02 2019-12-06 6
Choice of <
or <=
depends on your purpose.
To get total days between dt1
and dt2
,
df %>%
rowwise() %>%
mutate(val_count = length(x[dt1 < x & x < dt2])) %>%
mutate(dd = as.Date(dt2) - as.Date(dt1))
dt1 dt2 val_count dd
<chr> <chr> <int> <drtn>
1 2019-05-02 2019-08-30 3 120 days
2 2019-01-02 2019-04-24 3 112 days
3 2019-06-02 2019-12-06 6 187 days
Add
df %>%
rowwise() %>%
mutate(val_count = length(x[dt1 < x & x < dt2]),
val_count = ifelse(val_count == 0, 1, val_count)) %>%
mutate(dd = as.Date(dt2) - as.Date(dt1))
dt1 dt2 val_count dd
<chr> <chr> <dbl> <drtn>
1 2019-05-02 2019-08-30 3 120 days
2 2019-01-02 2019-04-24 3 112 days
3 2019-06-02 2019-12-06 6 187 days
4 2019-06-01 2019-06-02 1 1 days
CodePudding user response:
The above solution is indeed kinda messy, it just takes a simple oneliner to do this
df <- data.frame(dt1 = c("2019-05-02", "2019-01-02", "2019-06-02", "2019-06-01"), dt2 = c("2019-08-30", "2019-04-24", "2019-12-06", "2019-06-02") )
df %>%
mutate(val_count = as.period(ymd(dt2) - ymd(dt1)) %/% months(1))
# dt1 dt2 val_count
# 1 2019-05-02 2019-08-30 3
# 2 2019-01-02 2019-04-24 3
# 3 2019-06-02 2019-12-06 6
# 4 2019-06-01 2019-06-02 0