I have this fake dataframe:
df <- structure(list(Group = c(1L, 1L, 2L, 2L), A = 1:4, B = 5:8, C = 9:12,
X = c("A", "A", "B", "B")), class = "data.frame", row.names = c(NA, -4L))
Group A B C X
1 1 1 5 9 A
2 1 2 6 10 A
3 2 3 7 11 B
4 2 4 8 12 B
I try to mutate a new column, which should take the value of THE column that has the column name in an other column:
Desired output:
Group A B C X new_col
1 1 5 9 A 1
1 2 6 10 A 1
2 3 7 11 B 7
2 4 8 12 B 7
My try so far:
library(dplyr)
df %>%
group_by(Group) %>%
mutate(across(c(A,B,C), ~ifelse(first(X) %in% colnames(.), first(.), .), .names = "new_{.col}"))
Group A B C X new_A new_B new_C
<int> <int> <int> <int> <chr> <int> <int> <int>
1 1 1 5 9 A 1 5 9
2 1 2 6 10 A 1 5 9
3 2 3 7 11 B 3 7 11
4 2 4 8 12 B 3 7 11
CodePudding user response:
One option might be:
df %>%
rowwise() %>%
mutate(new_col = get(X)) %>%
group_by(Group, X) %>%
mutate(new_col = first(new_col))
Group A B C X new_col
<int> <int> <int> <int> <chr> <int>
1 1 1 5 9 A 1
2 1 2 6 10 A 1
3 2 3 7 11 B 7
4 2 4 8 12 B 7