I have a dataframe structured as well:
Timestamp Value
2021-06-07T03:19:49.000 0000 8
2021-06-07T03:20:19.000 0000 4
2021-06-07T03:20:49.000 0000 3
2021-06-08T03:11:05.000 0000 2
2021-06-08T03:11:35.000 0000 6
The result I want is this, where I aggregate per day and compute the mean:
Timestamp Value
2021-06-07 5
2021-06-08 4
How can I do it using pandas? Do I need to cast the timastamp?
CodePudding user response:
Try Series.Groupby
out = df.groupby(df.Timestamp.dt.date)['Value'].mean().reset_index()
out
Out[82]:
Timestamp Value
0 2021-06-07 5.0
1 2021-06-08 4.0
CodePudding user response:
Make sure the index is a pd.DatetimeIndex, then you can do this:
df = df.resample('D').mean()