I use GridSearchCV of scikit-learn to find the best parameters for my XGBClassifier model, I use code like below:
grid_params = {
'n_estimators' : [100, 500, 1000],
'subsample' : [0.01, 0.05]
}
est = xgb.Classifier()
grid_xgb = GridSearchCV(param_grid = grid_params,
estimator = est,
scoring = 'roc_auc',
cv = 4,
verbose = 0)
grid_xgb.fit(X_train, y_train)
print('best estimator:', grid_xgb.best_estimator_)
print('best AUC:', grid_xgb.best_score_)
print('best parameters:', grid_xgb.best_params_)
I need to have feature importance DataFrame with my variables and their importance something like below:
variable | importance
---------|-------
x1 | 12.456
x2 | 3.4509
x3 | 1.4456
... | ...
How can I achieve above DF from my XGBClassifier made by using GridSearchCV ?
I tried to achieve that by using something like below:
f_imp_xgb = grid_xgb.get_booster().get_score(importance_type='gain')
keys = list(f_imp_xgb.keys())
values = list(f_imp_xgb.values())
df_f_imp_xgb = pd.DataFrame(data = values, index = keys, columns = ['score']).sort_values(by='score', ascending = False)
But I have error:
AttributeError: 'GridSearchCV' object has no attribute 'get_booster'
What can I do?
CodePudding user response:
You can use
clf.best_estimator_.get_booster().get_score(importance_type='gain')
where clf
is the fitted GridSearchCV
.
import pandas as pd
import numpy as np
from xgboost import XGBClassifier
from sklearn.model_selection import GridSearchCV
np.random.seed(42)
# generate some dummy data
df = pd.DataFrame(data=np.random.normal(loc=0, scale=1, size=(100, 3)), columns=['x1', 'x2', 'x3'])
df['y'] = np.where(df.mean(axis=1) > 0, 1, 0)
# find the best model
X = df.drop(labels=['y'], axis=1)
y = df['y']
parameters = {
'n_estimators': [100, 500, 1000],
'subsample': [0.01, 0.05]
}
clf = GridSearchCV(
param_grid=parameters,
estimator=XGBClassifier(random_state=42),
scoring='roc_auc',
cv=4,
verbose=0
)
clf.fit(X, y)
# get the feature importances
importances = clf.best_estimator_.get_booster().get_score(importance_type='gain')
print(importances)
# {'x1': 1.7825901508331299, 'x2': 1.4209487438201904, 'x3': 1.5004568099975586}
After that you can create the data frame as follows
importances = pd.DataFrame(importances, index=[0]).transpose().reset_index()
importances.columns = ['variable', 'importance']
print(importances)
# variable importance
# 0 x1 1.782590
# 1 x2 1.420949
# 2 x3 1.500457