If I run
import seaborn as sns
list(sns.diverging_palette(230, 20, as_cmap=False))
then I get
[(0.2509335357076959, 0.4944143311197457, 0.6104170295454565),
(0.5266567751883763, 0.6751928585334119, 0.7467240840661897),
(0.8050726244296104, 0.8577368012538521, 0.884362262166227),
(0.9140860646530862, 0.8246826885128927, 0.8028133239419792),
(0.8384144678873866, 0.5785740917778832, 0.5129511551488873),
(0.7634747047461135, 0.3348456555528834, 0.225892295531744)]
However, if I do
list(sns.diverging_palette(230, 20, as_cmap=True))
then I get an error:
TypeError: 'LinearSegmentedColormap' object is not iterable
Is there a way to convert a Colormap
to a list, like I could do above when I passed as_cmap=False
?
Here's what I would like to end up with:
def func(cmap):
...
cmap = sns.diverging_palette(230, 20, as_cmap=True)
func(cmap)
returning a list like the one above.
How can I write such a func
?
CodePudding user response:
Internally, a matplotlib colormap is just a list of 256 colors. Externally, it is a function that maps a number between 0 and 1 to one of these colors. So you can call the colormap with an array of 256 equally-spaced points between 0 and 1 to get the list:
import seaborn as sns
import numpy as np
cmap_as_list1 = sns.diverging_palette(230, 20, as_cmap=True)(np.linspace(0, 1, 256))
sns.palplot(cmap_as_list1)
Seaborn stores its palettes just as lists of colors, so you can use as_cmap=False
and ask n=256
colors:
cmap_as_list2 = sns.diverging_palette(230, 20, n=256, as_cmap=False)
sns.palplot(cmap_as_list2)