I have a Spark question, so for the input for each entity k
I have a sequence of probability p_i
with a value associated v_i
, for example the data can look like this
entity | Probability | value
A | 0.8 | 10
A | 0.6 | 15
A | 0.3 | 20
B | 0.8 | 10
Then, for entity A
, I'm expecting the avg value to be 0.8*10 (1-0.8)*0.6*15 (1-0.8)*(1-0.6)*0.3*20 (1-0.8)*(1-0.6)*(1-0.3)*MAX_VALUE_DEFINED
.
How could I achieve this in Spark using DataFrame agg func
? I found it's challenging given the complexity to groupBy
entity and compute the sequence of results.
CodePudding user response:
You can use UDF to perform such custom calculations. The idea is using collect_list
to group all probab and values of A
into one place so you can loop through it. However, collect_list
does not respect the order of your records, therefore might lead to the wrong calculation. One way to fix it is generating ID for each row using monotonically_increasing_id
import pyspark.sql.functions as F
@F.pandas_udf('double')
def markov_udf(values):
def markov(lst):
# you can implement your markov logic here
s = 0
for i, prob, val in lst:
s = prob
return s
return values.apply(markov)
(df
.withColumn('id', F.monotonically_increasing_id())
.groupBy('entity')
.agg(F.array_sort(F.collect_list(F.array('id', 'probability', 'value'))).alias('values'))
.withColumn('markov', markov_udf('values'))
.show(10, False)
)
------ ------------------------------------------------------ ------
|entity|values |markov|
------ ------------------------------------------------------ ------
|B |[[3.0, 0.8, 10.0]] |0.8 |
|A |[[0.0, 0.8, 10.0], [1.0, 0.6, 15.0], [2.0, 0.3, 20.0]]|1.7 |
------ ------------------------------------------------------ ------
CodePudding user response:
There may be a better solution, but I think this does what you needed.
from pyspark.sql import functions as F, Window as W
df = spark.createDataFrame(
[('A', 0.8, 10),
('A', 0.6, 15),
('A', 0.3, 20),
('B', 0.8, 10)],
['entity', 'Probability', 'value']
)
w_desc = W.partitionBy('entity').orderBy(F.desc('value'))
w_asc = W.partitionBy('entity').orderBy('value')
df = df.withColumn('_ent_max_val', F.max('value').over(w_desc))
df = df.withColumn('_prob2', 1 - F.col('Probability'))
df = df.withColumn('_cum_prob2', F.product('_prob2').over(w_asc) / F.col('_prob2'))
df = (df.groupBy('entity')
.agg(F.round((F.max('_ent_max_val') * F.product('_prob2')
F.sum(F.col('_cum_prob2') * F.col('Probability') * F.col('value'))
),2).alias('mean_value'))
)
df.show()
# ------ ----------
# |entity|mean_value|
# ------ ----------
# | A| 11.4|
# | B| 10.0|
# ------ ----------