I'm totally new to Pyspark, as Pyspark doesn't have loc feature how can we write this logic. I tried by specifying conditions but couldn't get the desirable result, any help would be greatly appreciated!
df['Total'] = (df['level1'] df['level2'] df['level3'] df['level4'])/df['Number']
df.loc[df['level4'] > 0, 'Total'] = 4
df.loc[((df['level3'] > 0) & (df['Total'] < 1)), 'Total'] = 3
df.loc[((df['level2'] > 0) & (df['Total'] < 1)), 'Total'] = 2
df.loc[((df['level1'] > 0) & (df['Total'] < 1)), 'Total'] = 1
CodePudding user response:
For a data like the following
data_ls = [
(1, 1, 1, 1, 10),
(5, 5, 5, 5, 10)
]
data_sdf = spark.sparkContext.parallelize(data_ls). \
toDF(['level1', 'level2', 'level3', 'level4', 'number'])
# ------ ------ ------ ------ ------
# |level1|level2|level3|level4|number|
# ------ ------ ------ ------ ------
# | 1| 1| 1| 1| 10|
# | 5| 5| 5| 5| 10|
# ------ ------ ------ ------ ------
You're actually updating total
column in each statement, not in an if-then-else way. Your code can be replicated (as is) in pyspark using multiple withColumn()
with when()
like the following.
data_sdf. \
withColumn('total', (func.col('level1') func.col('level2') func.col('level3') func.col('level4')) / func.col('number')). \
withColumn('total', func.when(func.col('level4') > 0, func.col('total') 4).otherwise(func.col('total'))). \
withColumn('total', func.when((func.col('level3') > 0) & (func.col('total') < 1), func.col('total') 3).otherwise(func.col('total'))). \
withColumn('total', func.when((func.col('level2') > 0) & (func.col('total') < 1), func.col('total') 2).otherwise(func.col('total'))). \
withColumn('total', func.when((func.col('level1') > 0) & (func.col('total') < 1), func.col('total') 1).otherwise(func.col('total'))). \
show()
# ------ ------ ------ ------ ------ -----
# |level1|level2|level3|level4|number|total|
# ------ ------ ------ ------ ------ -----
# | 1| 1| 1| 1| 10| 4.4|
# | 5| 5| 5| 5| 10| 6.0|
# ------ ------ ------ ------ ------ -----
We can merge all the withColumn()
with when()
into a single withColumn()
with multiple when()
statements.
data_sdf. \
withColumn('total', (func.col('level1') func.col('level2') func.col('level3') func.col('level4')) / func.col('number')). \
withColumn('total',
func.when(func.col('level4') > 0, func.col('total') 4).
when((func.col('level3') > 0) & (func.col('total') < 1), func.col('total') 3).
when((func.col('level2') > 0) & (func.col('total') < 1), func.col('total') 2).
when((func.col('level1') > 0) & (func.col('total') < 1), func.col('total') 1).
otherwise(func.col('total'))
). \
show()
# ------ ------ ------ ------ ------ -----
# |level1|level2|level3|level4|number|total|
# ------ ------ ------ ------ ------ -----
# | 1| 1| 1| 1| 10| 4.4|
# | 5| 5| 5| 5| 10| 6.0|
# ------ ------ ------ ------ ------ -----
It's like numpy.where
and SQL's case
statements.