Home > OS >  Find trigrams for all groupby clusters in a Pandas Dataframe and return in a new column
Find trigrams for all groupby clusters in a Pandas Dataframe and return in a new column

Time:08-11

I'm trying to return the highest frequency trigram in a new column in a pandas dataframe for each group of keywords. (Essentially something like a groupby with transform, returning the highest trigram in a new column).

An example dataframe with dummy data

  cluster_name                         keyword
0       summer          summer dresses size 10
1       summer          summer dresses size 12
2       summer            large summer dresses
3       summer          summer dresses size 14
4      strappy   ladies strappy summer dresses
5      strappy  strappy summer dresses uk 2022
6      strappy            strappy summer dress
7      strappy          strappy summer dresses
8      strappy       thin strap summer dresses

Desired Output

  cluster_name                         trigram         
0       summer             summer dresses size    
4      strappy          strappy summer dresses

Minimum Reproducible Example

import pandas as pd

data = [
    ["summer", "summer dresses size 10"],
    ["summer", "summer dresses size 12"],
    ["summer", "large summer dresses"],
    ["summer", "summer dresses size 14"],
    ["strappy", "ladies strappy summer dresses"],
    ["strappy", "strappy summer dresses uk 2022"],
    ["strappy", "strappy summer dress"],
    ["strappy", "strappy summer dresses"],
    ["strappy", "thin strap summer dresses"],
]

df = pd.DataFrame(data, columns=['cluster_name', 'keyword'])
print(df)

What I've tried.

I have working code to find bigrams but it's a bit hacky. It is fast though (much faster than iterows, which I'd be keen to avoid). It was taken from this solution: How to get group-by and get most frequent words and bigrams for each group pandas

The ideal outcome would be a universal solution I could tinker slightly to return unigrams, bigrams or trigrams etc just by changing a single value.

def bigram(row):
    lst = row['keyword'].split(' ')
    return bigrams.append([(lst[x].strip(), lst[x 1].strip()) for x in range(len(lst)-1)])

df['parent_cluster'] = df.apply(lambda row: bigram(row), axis=1)
df2 = df.groupby('cluster_name').agg({'parent_cluster': 'sum'})
df3 = df2.parent_cluster.apply(lambda row: Counter(row)).to_frame().astype(str)
df3["parent_cluster"] = (df3["parent_cluster"].str.split(',').str[0])

# clean up the unigram column to remove the string of the Counter library.
df3["parent_cluster"] = df3["parent_cluster"].str.replace("Counter\({\('", '')
df3["parent_cluster"] = df3["parent_cluster"].str.replace("'", '')

CodePudding user response:

You can use nltk.ngrams combined with explode/groupby/mode:

from nltk import ngrams  # or use a custom function

out = (df
 .assign(keyword=[list(ngrams(s.split(), n=3)) for s in df['keyword']])
 .explode('keyword')
 .groupby('cluster_name')['keyword'].apply(lambda g: g.mode()[0])
)

output:

cluster_name
strappy    (strappy, summer, dresses)
summer        (summer, dresses, size)
Name: keyword, dtype: object

As strings:

out = (df
 .assign(keyword=[[' '.join(x) for x in ngrams(s.split(), n=3)]
                   for s in df['keyword']])
 .explode('keyword')
 .groupby('cluster_name')['keyword'].apply(lambda g: g.mode()[0])
 .reset_index(name='trigram')
)

output:

  cluster_name                 trigram
0      strappy  strappy summer dresses
1       summer     summer dresses size
  • Related