I have df1
df1 = pd.DataFrame({'x':[1,2,3,5],
'y':[2,3,4,6],
'value':[1.5,2.0,0.5,3.0]})
df1
x y value
0 1 2 1.5
1 2 3 2.0
2 3 4 0.5
3 5 6 3.0
and I want to assign the value
at x
and y
coordinates to another dataframe df2
df2 = pd.DataFrame(0.0, index=[x for x in range(0,df1['x'].max() 1)], columns=[y for y in range(0,df1['y'].max() 1)])
df2
0 1 2 3 4 5 6
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
by
for x, y, value in zip(df1['x'],df1['y'],df1['value']):
df2.at[x,y] = value
to give
0 1 2 3 4 5 6
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 1.5 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 2.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.5 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 3.0
However, it is a bit slow because I have a long df1
.
Do we have a faster method than df.at[x,y]
?
CodePudding user response:
You can avoid create zero df2
and using df.at
method by DataFrame.pivot
, DataFrame.fillna
and DataFrame.reindex
:
df2 = (df1.pivot('x','y','value')
.fillna(0)
.reindex(index=range(df1['x'].max() 1),
columns=range(df1['y'].max() 1), fill_value=0))
print (df2)
y 0 1 2 3 4 5 6
x
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 1.5 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 2.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.5 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 3.0
CodePudding user response:
Since your data is all numbers, you can use numpy; with a larger dataset, it might be faster than using pd.pivot
:
# create a flattened array from df2
temp = df2.to_numpy().ravel()
# get indices for a flattened array, based on df1.x and df1.y
arr = np.ravel_multi_index((df1.x, df1.y), df2.shape)
# replace at the positions with df1.value
temp[arr] = df1.value
# reshape and create dataframe
temp = temp.reshape(df2.shape)
pd.DataFrame(temp, columns = df2.columns)
0 1 2 3 4 5 6
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0 1.5 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 2.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.5 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 3.0