I have a dataframe which looks like this:
| id | A | B | C | D |
| 1 | 50 | 51 | 52 | 53 |
| 2 | 70 | 71 | 72 | 73 |
| 1 | 80 | 81 | 82 | 83 |
| 1 | 90 | 91 | 92 | 93 |
| 2 | 40 | 41 | 42 | 43 |
I want to group it on 'id' column so that each row is in form of list.
Expected Output:
| id | A | B | C | D |
| 1 | [50,80,90] | [51,81,91] | [52,82,92] | [53,83,93] |
| 2 | [70,40] | [71,41] | [72,42] | [73,43] |
Explaination: The values for id 1 in column A are all in one list similarly for other. The length of list depends on number of records of that id in initial dataframe.
My approach:
df_grouped = df.groupby(['id'])['A'].apply(lambda x: list(x)).reset_index().merge(df.groupby(['id'])['B'].apply(lambda x: list(x)).reset_index().merge(df.groupby(['id'])['C'].apply(lambda x: list(x)).reset_index().merge(df.groupby(['id'])['D'].apply(lambda x: list(x)).reset_index()),on=['id'],how='left'))
Although this gives me the desired output, but its slow for large dataframes and I feel this is not very optimal as well as we are grouping on id each time and merging. There should be a way wherein I group on id once and do something columns.tolist() and it gives the same output.
Any help would be appreciated. Thanks
CodePudding user response:
Use GroupBy.agg
:
#all columns without id
df_grouped = df.groupby('id').agg(list).reset_index()
Or:
#columns specified in list
df_grouped = df.groupby('id')[['A','B','C','D']].agg(list).reset_index()
print (df_grouped)
id A B C D
0 1 [50, 80, 90] [51, 81, 91] [52, 82, 92] [53, 83, 93]
1 2 [70, 40] [71, 41] [72, 42] [73, 43]