I have multi-class classification (3 classes), thus 3 neurons in the output layer, all columns are numeric. And got a mistake I can't understand. Here's my code:
def df_to_dataset(df, shuffle=True, batch_size=32):
df = df.copy()
labels = df.pop('class')
dicts = {'STAR': 1, 'GALAXY': 2, 'QSO': 3}
converted_labels = np.array([dicts[l] for l in labels])
ds = tf.data.Dataset.from_tensor_slices((dict(df), converted_labels))
if shuffle:
ds = ds.shuffle(buffer_size=len(df))
return ds
batch_size = 32
train_ds = df_to_dataset(train, batch_size=batch_size)
val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size)
test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size)
feature_columns = []
for numeric_col in ['objid', 'ra', 'dec', 'u', 'g', 'r', 'i', 'z', 'run', 'rerun', 'camcol', 'field', 'specobjid', 'redshift', 'plate', 'mjd', 'fiberid']:
feature_columns.append(feature_column.numeric_column(numeric_col))
feature_layer = DenseFeatures(feature_columns) # A layer that produces a dense Tensor
model = Sequential([
feature_layer,
Dense(32, activation='relu'),
Dense(3, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(train_ds,
validation_data=val_ds,
epochs=10)
And here's an error:
ValueError: in user code:
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 878, in train_function *
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 867, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 860, in run_step **
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 808, in train_step
y_pred = self(x, training=True)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
ValueError: Exception encountered when calling layer "dense_features_5" (type DenseFeatures).
Feature (key: camcol) cannot have rank 0. Given: Tensor("IteratorGetNext:0", shape=(), dtype=int64)
Please tell me what can it be?
CodePudding user response:
So I accidentally removed this line from df_to_dataset function:
def df_to_dataset(df, shuffle=True, batch_size=32):
df = df.copy()
labels = df.pop('class')
dicts = {'STAR': 1, 'GALAXY': 2, 'QSO': 3}
converted_labels = np.array([dicts[l] for l in labels])
ds = tf.data.Dataset.from_tensor_slices((dict(df), converted_labels))
if shuffle:
ds = ds.shuffle(buffer_size=len(df))
ds = ds.batch(batch_size) # this one
return ds
Now everything works fine :)
UPDATE: you CAN pass all data you have, not batches, but in tensorflow it is expected that you pass batches