I'm having a problem implementing a super-resolution model
class SRNet(Model):
def __init__(self, scale=4):
super(SRNet, self).__init__()
self.scale = scale
self.conv1 = Sequential([
layers.Conv2D(filters=64, kernel_size=3,
strides=(1, 1), padding="same", data_format="channels_first"),
layers.ReLU(),
])
self.residualBlocks = Sequential(
[ResidualBlock() for _ in range(16)])
self.convUp = Sequential([
layers.Conv2DTranspose(filters=64, kernel_size=3, strides=(
2, 2), padding="same", data_format="channels_first"),
layers.ReLU(),
layers.Conv2DTranspose(filters=64, kernel_size=3, strides=(
2, 2), padding="same", data_format="channels_first"),
layers.ReLU(),
])
self.reluAfterPixleShuffle = layers.ReLU()
self.convOut = layers.Conv2D(
filters=3, kernel_size=3, strides=(1, 1), padding="same", data_format="channels_first", input_shape=(4, 1440, 2560)) # (kernel, kernel, channel, output)
def call(self, lrCur_hrPrevTran):
lrCur, hrPrevTran = lrCur_hrPrevTran
x = tf.concat([lrCur, hrPrevTran], axis=1)
x = self.conv1(x)
x = self.residualBlocks(x)
x = self.convUp(x)
# pixel shuffle
Subpixel_layer = Lambda(lambda x: tf.nn.depth_to_space(
x, self.scale, data_format="NCHW"))
x = Subpixel_layer(inputs=x)
x = self.reluAfterPixleShuffle(x)
x = self.convOut(x)
return x
Error
/usr/src/app/generator.py:164 call *
x = self.convOut(x)
ValueError: Tensor's shape (3, 3, 64, 3) is not compatible with supplied shape (3, 3, 4, 3)
after reading the error I know that (3, 3, 4, 3) is (kernel size, kernel size, channel, output) mean that only channel of input is not correct
so I printed out the shape of the input
# after pixel shuffle before convOut
print(x.shape)
>>> (1, 4, 1440, 2560) (batch size, channel, height, width)
but the shape of x after pixel shuffle (depth_to_space)
is (1, 4, 1440, 2560) the channel value is 4 which is the same as convOut
need
question is why the input's channel is changing from 4 to 64 as the error?
CodePudding user response:
I have found a solution
First of all, I'm using checkpoints to save model weight when training
during the implementation and testing of the model, I have changed some of the layers so the input size is changed too, but my weight still remember the input size from the previous checkpoint
so I delete the checkpoints folder and then everything works again