I have two large datasets that want to match with each other
library(tidyverse)
df1 <- tibble(position=c(10,11,200,250,300))
df1
#> # A tibble: 5 × 1
#> position
#> <dbl>
#> 1 10
#> 2 11
#> 3 200
#> 4 250
#> 5 300
df2 <- tibble(start=c(1,10,200,251),
end=c(20,100,250,350),
name=c("geneA","geneB","geneC","geneD"))
df2
#> # A tibble: 4 × 3
#> start end name
#> <dbl> <dbl> <chr>
#> 1 1 20 geneA
#> 2 10 100 geneB
#> 3 200 250 geneC
#> 4 251 350 geneD
Created on 2022-03-03 by the reprex package (v2.0.1)
I have the position of the genes in the df1 and I want to find based on the range (start-end) from the df2 how many genes can be found in this position.
I want my data to look like this
position start end name
<dbl> <dbl> <dbl> <chr>
1 10 1 20 geneA
2 10 10 100 geneB
3 11 1 20 geneA
4 11 10 100 geneB
5 200 200 250 geneC
6 250 200 250 geneC
7 300 251 350 geneD
One way to solve this could be through crossing and filtering
df1 %>%
crossing(df2) %>%
filter(position >= start & position <= end)
However my dataset is way too large and can not afford crossing or expanding. Any other idea?
CodePudding user response:
SQL engines can perform such operations without crossing. (It may be possible to speed it up even more if you add indexes.)
library(sqldf)
sqldf("select *
from df1 a
join df2 b on a.position between b.start and b.end")
CodePudding user response:
crossing
is a wrapper around expand_grid
and does additional stuff e.g. filtering. You can use it directly:
library(tidyverse)
df1 <- tibble(position = c(10, 11, 200, 250, 300))
df1
#> # A tibble: 5 × 1
#> position
#> <dbl>
#> 1 10
#> 2 11
#> 3 200
#> 4 250
#> 5 300
df2 <- tibble(
start = c(1, 10, 200, 251),
end = c(20, 100, 250, 350),
name = c("geneA", "geneB", "geneC", "geneD")
)
expand_grid(df1, df2) %>%
filter(position >= start & position <= end)
#> # A tibble: 7 × 4
#> position start end name
#> <dbl> <dbl> <dbl> <chr>
#> 1 10 1 20 geneA
#> 2 10 10 100 geneB
#> 3 11 1 20 geneA
#> 4 11 10 100 geneB
#> 5 200 200 250 geneC
#> 6 250 200 250 geneC
#> 7 300 251 350 geneD
Created on 2022-03-03 by the reprex package (v2.0.0)
CodePudding user response:
Here is a dplyr
way (sort of).
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
df1 <- tibble(position = c(10, 11, 200, 250, 300))
df2 <- tibble(
start = c(1, 10, 200, 251),
end = c(20, 100, 250, 350),
name = c("geneA", "geneB", "geneC", "geneD")
)
vbetween <- function(data, col, data2, start, end){
f <- function(x, l, r) l <= x & x <= r
col <- enquo(col)
start <- enquo(start)
end <- enquo(end)
x <- data %>% pull(!!col)
l <- data2 %>% pull(!!start)
r <- data2 %>% pull(!!end)
yes <- lapply(x, f, l = l, r = r)
lapply(yes, \(i) data2[i, ])
}
df1 %>% vbetween(position, df2, start, end) %>% bind_rows()
#> # A tibble: 7 x 3
#> start end name
#> <dbl> <dbl> <chr>
#> 1 1 20 geneA
#> 2 10 100 geneB
#> 3 1 20 geneA
#> 4 10 100 geneB
#> 5 200 250 geneC
#> 6 200 250 geneC
#> 7 251 350 geneD
Created on 2022-03-03 by the reprex package (v2.0.1)