I've got 16 bit data in the following LE bit format:
B4 | B5 | C1 | C2 | C3 | D1 | D2 | D3
A1 | A2 | A3 | A4 | A5 | B1 | B2 | B3
Each letter represents one data category that I want to extract and make a seperate image from.
Using this python code, I managed to create an image from the A layer, but I did not succeed in extracting B, C and D.
# using numpy and PIL
data = np.fromfile(i, dtype=np.dtype('<u2')).reshape(size, size)
A = ((data & 31) - 1).astype('uint8')
image_A = Image.fromarray(A)
Does anyone know how that would work?
Sample data (512x512), Output A
CodePudding user response:
Using a dictionary of bitmasks and some bit twiddling to compute the requisite shifts:
import numpy as np
from PIL import Image
def extract_mask(arr, mask):
# bit twiddling magic (count trailing zeros)
shift = int(np.log2(mask & -mask))
return (arr & mask) >> shift
masks = {
"A": 0b000_000_00000_11111,
"B": 0b000_000_11111_00000,
"C": 0b000_111_00000_00000,
"D": 0b111_000_00000_00000,
}
filename = "512x512.buffer"
size = 512
data = np.fromfile(filename, dtype="<u2").reshape(size, size)
images = {
k: Image.fromarray(extract_mask(data, mask).astype(np.uint8))
for k, mask in masks.items()
}