Question 1: objective function
F=((2) * x (2)) * (4) * x (1) + 5. * a * r + a. ^ 2. * x + n. (2) ^ 2 * r ^ 2 + 3. * a. * x (1). * r + 4)))/((r + 4) a. *. * (2 * a. * r + 2)) - (2) * (8. * a. * x (2) + 8. * a. ^ 2. * r. * x (2) - r. * (a. * r + 2). *
(4) * x (1) + 5. * a * r + a. ^ 2. * r ^ 2 + 3. * a. * x (1). * r + 4) + a. ^ 3. * r ^ 2. * x (2)). * (r + 4. 4. * * a. * x (2) + 4) * x (1). * r + 5. * a. * r ^ 2 + a. ^ 2 * r ^ 3 + 3. * a. * x (1). * r. ^ 2 + 2) * a. ^ 2. * r. * x
(2)))/((a. * r + 1). * (a. * r + 4). ^ 2. * (a. 3. * * r + 4). * (a. 6. * * r + 8)))/x (1) ^ 2;
X (1), x (2) as the two variables, variable scope are (0, 1), a, r for parameters, parameters are (0, 1),
Problem, want to find out in any a, r parameter, f (x (1), x (2)), the smallest value of parameter a, r cycle,
Question 2
F=((2) * x (2)) * (4) * x (1) + 5. * a * r + a. ^ 2. * x + n. (2) ^ 2 * r ^ 2 + 3. * a. * x (1). * r + 4)))/((r + 4) a. *. * (2 * a. * r + 2)) - (2) * (8. * a. * x (2) + 8. * a. ^ 2. * r. * x (2) - r. * (a. * r + 2). *
(4) * x (1) + 5. * a * r + a. ^ 2. * r ^ 2 + 3. * a. * x (1). * r + 4) + a. ^ 3. * r ^ 2. * x (2)). * (r + 4. 4. * * a. * x (2) + 4) * x (1). * r + 5. * a. * r ^ 2 + a. ^ 2 * r ^ 3 + 3. * a. * x (1). * r. ^ 2 + 2) * a. ^ 2. * r. * x
(2)))/((a. * r + 1). * (a. * r + 4). ^ 2. * (a. 3. * * r + 4). * (a. 6. * * r + 8)))/x (1) ^ 2;
X (1), (2) as the two variables, x variable range of [0, 1], a, r as symbolic variable, as a parameter, how to evaluate the binary function within the domain of the minimum value, and calculate the minimum point on the x (1), x (2) expression, note: minimum, x (1), x (2) the best express
For about a, r expression,
Question 3:
F=((2) * x (2)) * (4) * x (1) + 5. * a * r + a. ^ 2. * x + n. (2) ^ 2 * r ^ 2 + 3. * a. * x (1). * r + 4)))/((r + 4) a. *. * (2 * a. * r + 2)) - (2) * (8. * a. * x (2) + 8. * a. ^ 2. * r. * x (2) - r. * (a. * r + 2). *
(4) * x (1) + 5. * a * r + a. ^ 2. * r ^ 2 + 3. * a. * x (1). * r + 4) + a. ^ 3. * r ^ 2. * x (2)). * (r + 4. 4. * * a. * x (2) + 4) * x (1). * r + 5. * a. * r ^ 2 + a. ^ 2 * r ^ 3 + 3. * a. * x (1). * r. ^ 2 + 2) * a. ^ 2. * r. * x
(2)))/((a. * r + 1). * (a. * r + 4). ^ 2. * (a. 3. * * r + 4). * (a. 6. * * r + 8)))/x (1) ^ 2;
X (1), (2) as the two variables, x variable range of [0, 1], a, r as symbolic variable, as a parameter,
Use the method of mathematical proof, how o f (x (1), x (2)), the smallest value of Kuhn tucker condition of whether to use nonlinear programming to prove, if can help me write the brief steps,